Asymmetric Total Synthesis of a New Non-natural 1β -Methoxycarbapenem

Yoshimitsu Nagao,*a Takao Abe,a Hisashi Shimizu,b Toshio Kumagai,b and Yoshinori Inoueb

- ^a Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
- ^b The Chemical and Formulation Laboratory, Lederle (Japan) Ltd., Kashiwacho, Shiki, Saitama 353, Japan

The asymmetric total synthesis of the new non-natural 1β -methoxycarbapenem (1) has been achieved *via* highly diastereoselective alkylation at the C-4 position of 4-acetoxyazetidin-2-one (4) with the tin enolate of thiazolidinethione (3); the stereochemistry has been confirmed by an X-ray crystal structure determination of the derivative (13).

The synthetic development of new artificial 1β -substituted carbapenems is of current interest in the study of β -lactam antibiotics. Recently, we have reported a highly diastereoselective alkylation method which should be generally applicable to the syntheses of various 1β -substituted carbapenems. Thus, we attempted the asymmetric total

Scheme 1. Reagents and conditions: i, $Sn(OSO_2CF_3)_2$, THF, $-78\,^{\circ}C$; ii, N-ethylpiperidine, THF, -60 to $78\,^{\circ}C$; iii, imidazole, MeCN; iv, $Mg(O_2CH_2CO_2PNB)_2$, MeCN; v, conc. HCl, MeOH; vi, p-dodecylbenzenesulphonyl azide, Et_3N , MeCN; vii, $Rh_2(OAc)_4$, toluene-AcOEt(1:1), $80\,^{\circ}C$; viii, $(PhO)_2P(O)Cl$, Pr^i_2NEt , MeCN, $0\,^{\circ}C$; ix, 2-mercaptopyrimidine, Pr^i_2NEt , dimethylformamide, $0\,^{\circ}C$ to room temp.; x, H_2 (3 atm), PtO_2 , $THF-H_2O$ (1:1). PNB = p-nitrobenzyl.

synthesis of the new 1β -substituted carbapenem (1), and now report our results (Scheme 1).

The chiral tin(II) enolate (3), prepared *in situ* by treatment of the (4S)-thiazolidinethione (2) (23.7 mmol) with tin(II) trifluoromethanesulphonate³ (30.5 mmol) in tetrahydrofuran (THF) at -78 °C and then with N-ethylpiperidine³ (32.2 mmol) at -60 to -78 °C for 2 h, was allowed to react with the (3R,4R) azetidinone (4) (16.9 mmol) in THF at 0 °C for 30 min. This reaction afforded the desired 4-alkylated azetidin-2-one (6) {yellow oil, $[\alpha]_D^{26} + 178.6^\circ$ (c 1.85, CHCl₃)} with high diastereoselectivity [96% diastereoisomeric excess, h.p.l.c. analysis] and in 96% yield. The highly diastereoselective formation of β -methoxy derivative (6) can be rationalised in terms of a possible 6-membered transition state (5),² where

the cyclic acyl imine obtained by elimination of acetic acid from (4) can predominantly be placed on the upper side of the Z-enolate (3) avoiding steric repulsion between the ethyl group of the thiazolidine moiety and the bulky 3-substituent of the cyclic acyl imine moiety. Pure compound (6) having an active amide structure⁴ was subjected to aminolysis with imidazole (1.2 mol. equiv.) in MeCN at room temperature for 3.5 h to give the imidazole derivative (7), which was immediately treated with magnesium p-nitrobenzylmalonate⁵ (1 mol. equiv.) at room temperature for 18 h to afford β -keto ester (8) [96% yield from (6)]. Deprotection [96% yield of (9)] of the t-butyldimethylsilyl group of (8) followed by diazotization with p-dodecylbenzenesulphonyl azide⁵ (1.2 mol. equiv.) in the presence of Et₃N (1.2 mol. equiv.) furnished diazo

Figure 1. Perspective view of the crystal structure of (13).

compound (10) {pale yellow prisms (AcOEt-Pri₂O), m.p. 63—64 °C, $[\alpha]_D^{26}$ –10.6° (c 0.75, CHCl₃)} in 90% yield. Annulation of (10) in the presence of Rh₂(OAc)₄⁵ (1 mol%) at 80 °C for 30 min in toluene–AcOEt (1:1) gave compound (11) {90% yield, colourless prisms (toluene), m.p. 140—143 °C, $[\alpha]_D^{25}$ +37.6° (c 0.82, CHCl₃)} which was successfully converted to 2-mercaptopyrimidine adduct (13) {colourless prisms (hexane–AcOEt), m.p. 154—156 °C (decomp.), $[\alpha]_D^{25}$ +156.9° (c 1.11, CHCl₃)} in 43% overall yield from (11) via the diphenylphosphoryl ester (12) as shown in Scheme 1. The absolute stereochemistry of (13) derived from known compound (4)¹ was readily confirmed by its relative stereochem-

istry obtained from the X-ray analysis. (Figure 1).† Finally, hydrogenolytic deprotection of the p-nitrobenzyl group of (13) afforded the desired new 1 β -methoxycarbapenem carboxylic acid (1) {colourless amorphous solid (water), m.p. 157—158 °C (decomp.), $[\alpha]_D^{25}$ +36.6° (c 0.5, H₂O)} in 76% yield. Thus, we have established an efficient synthetic procedure for the new non-natural 1 β -methoxycarbapenem (1) in a completely stereocontrolled manner.

Received, 30th November 1988; Com. 8/04740E

References

- (a) D. H. Shih, F. Baker, L. Cama, and B. G. Christensen, Heterocycles, 1984, 21, 29; (b) Eur. Pat. 160876 (Merck); (c) Y. Nagao, T. Kumagai, S. Tamai, T. Abe, Y. Kuramoto, T. Taga, S. Aoyagi, Y. Nagase, M. Ochiai, Y. Inoue, and E. Fujita, J. Am. Chem. Soc., 1986, 108, 4673; (d) L. M. Fuentes, I. Shinkai, and T. N. Salzmann, ibid., 1986, 108, 4675; (e) T. Iimori and M. Shibasaki, Tetrahedron Lett., 1986, 27, 2149; (f) R. Deziel and D. Favreau, ibid., 1986, 27, 5687; (g) C. U. Kim, B. Luh, and R. A. Patrtyka, ibid., 1987, 28, 507; (h) Y. Ito and S. Terashima, ibid., 1987, 28, 6625 and references cited therein.
- 2 (a) Y. Nagao, in 'Perspectives in the Organic Chemistry of Sulphur,' eds. B. Zwanenburg and A. J. H. Klunder, Elsevier, Amsterdam, 1987, p. 57; (b) Y. Nagao, T. Kumagai, T. Abe, M. Ochiai, T. Taga, K. Machida, and Y. Inoue, J. Chem. Soc., Chem. Commun., 1987, 602.
- 3 N. Iwasawa and T. Mukaiyama, Chem. Lett., 1983, 297.
- 4 Y. Nagao, K. Seno, K. Kawabata, T. Miyasaka, S. Takao, and E. Fujita, Chem. Pharm. Bull., 1984, 32, 2687.
- 5 D. H. Shih, L. Cama, and B. G. Christensen, *Tetrahedron Lett.*, 1985, **26**, 587 and references cited therein.

† Crystal data for (13): $C_{21}H_{20}N_4O_7S$, M=472.5, orthorhombic, space group $P2_12_12_1$, a=16.354(1), b=21.784(2), c=6.177(1) Å, U=2200.7(3) ų, $D_c=1.426$ g cm⁻³, Z=4, F(000)=984, $Cu-K_\alpha$ radiation ($\lambda=1.54178$ Å), R=0.044 for 1399 reflections. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.